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LATEX

Clinical Problem

Schizophrenia, ADHD, depression, and other mental illnesses cost the
U.S. $201+ billion annually1

Dementia and Alzheimer’s cost the U.S. $157+ billion annually2

Diagnosis of these diseases may be unreliable until symptoms become
severe, when treatment options are more limited

From Roerhig 2016.

1
Roerhig 2016 https://doi.org/10.1377/hlthaff.2015.1659

2
Hurd et al. 2013 doi:10.1056/NEJMsa1204629
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LATEX

fMRI and Mental Health

fMRI can be used to predict disease status and (endo)phenotypes
such as age, sex, and general fluid intelligence3

Machine learning predictions of brain age have been correlated with
future Alzheimer’s diagnosis before clinical symptoms appear4

fMRI has been used for pre-surgical planning, biofeedback, consumer
preference identification, and lie detection5...

...but diagnoses of mental disorders are still made by psychiatrists or
physicians based on cognitive tests6

3
Qu et al. 2021 10.1109/TBME.2021.3077875

4
Millar et al. 2022 10.1016/j.neuroimage.2022.119228

5
Farah et al. https://doi.org/10.1038/nrn3665

6
https://www.ndcn.ox.ac.uk/divisions/fmrib/what-is-fmri/how-is-fmri-used
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LATEX

fMRI Techniques

We can monitor neural activity at a coarse level through
neurovascular coupling and the BOLD signal

Many studies measure the activation of specific regions in response to
stimulus

We can also measure the synchronization between different ROIs
▶ Functional connectivity
▶ Effective connectivity
▶ Dynamic connectivity

Other techniques like ReHo7 exist, and may be better in some
circumstances

7
Zhang et al. 2020 https://doi.org/10.3389/fnhum.2020.00244
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Technical Challenges

It’s hard to find the signal.

Problem 1: Small Study Size

In 2017-2018, only 1% of fMRI studies had more than 100 subjects.a

a
Szucs and Ioannidis 2020 10.1016/j.neuroimage.2020.117164

Problem 2: High Dimensionality and Noise

Functional connectivity may have tens of thousands of features. The best
feature may have only a 4% correlation with the response variable.a

a
Author’s observations

Anton Orlichenko Decomposing fMRI Data with Latent SimilarityResearch MeetingSeptember 21, 2022 5 / 46



LATEX

Project Overview

1 Use Latent Similarity to solve Problem 1

2 Use Connectivity Decomposition to solve Problem 2

3 Develop and share tools to encourage reproducibility

4 Create visualization software to identify important features
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LATEX

Part 1: Latent Similarity (LatSim)
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LATEX

LatSim Overview

The idea is to use the O(n2) connections between the subjects rather than
the features of the O(n) subjects themselves.

Traditional ML GNN Model Latent Similarity
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LATEX

Metric Learning

A distance function (metric) satisfies the following conditions:

1 (Positivity) d(x , y) > 0

2 (Identity of indiscernibles) d(x , y) = 0 ⇐⇒ x = y

3 (Symmetry) d(x , y) = d(y , x)

4 (Triangle inequality) d(x , z) < d(x , y) + d(y , z)

Metrics include Euclidean distance, Mahalanobis distance, and (the
possibly learned) generalized Mahalanobis distance.

||xi − xj ||22 = (xi − xj)
T I(xi − xj)

||xi − xj ||2Σ = (xi − xj)
TΣ−1(xi − xj)

||xi − xj ||2W = (xi − xj)
TW(xi − xj)

(1)
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LATEX

Extensions and Deep Metric Learning

Metric learning is popular in machine learning on images and is related to
contrastive learning. Some examples of metric learning are8:

Fisher Discriminant Analysis

Fisher-HSIC Multi-view Metric Learning

Adversarial Metric Learning

Neighborhood Component Analysis

Noisy Contrastive Estimation and Negative Sampling

Siamese Networks and Triplet Loss

Label Propagation

8
Ghojogh et al. 2022 https://doi.org/10.48550/arXiv.2201.09267
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LATEX

Similarity Kernel

We learn a metric or similarity score between pairs of subjects.

sim(a, b) = ⟨ϕ(xa), ϕ(xb)⟩
sim(a, b) = xaAA

TxTb ,
(2)

⟨·, ·⟩ is the inner product
xa, xb ∈ Rd are feature vectors for subjects a and b, respectively
ϕ(xa) is a low-dimensional projection
A ∈ Rd×d ′

is the learned kernel matrix implementing the low-dimensional
projection
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LATEX

Population Graph

We then ensure the sum of each subject’s similarity to other subjects
equals 1 using the softmax function.

M = diag(∞),

E = SRow ((1−M)⊙ XAATXT ),

S(z)i =
ezi/τ

ΣN
j=0e

zj/τ
,

(3)

E ∈ RN×N is the final similarity matrix
M ∈ RN×N is a mask to remove self-loops in predictions
X ∈ RN×d is the feature matrix
A ∈ Rd×d ′

is the learned kernel taking connectivity features to a lower
latent dimension
S(z)i is the softmax function with temperature τ
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LATEX

Estimation and Training

The response variable estimate is found by multiplying the training set
response by the similarity matrix.

ŷ = Eytrain (4)

Training is performed via gradient descent, with parameters to control
sparsity, disentanglement between tasks, and alignment between
modalities.
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LATEX

Feature Selection

We utilized a greedy feature selection algorithm, made possible by the
high computational efficiency of LatSim.

The algorithm selects connections (features) one at a time by ranking
their ability to separate dissimilar subjects, i.e., their ability to
minimize similarity between subjects that are ”far apart” with regards
to the current residual.
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LATEX

Greedy Feature Selection Algorithm

r(i) = LatSim(XFi−1
, y)− y,

Dab = (r
(i)
a − r

(i)
b )2,

D = D− 1

N2
ΣabDab,

Fi = Fi−1 ∪ {argmin
j

Σab(DabXajXbj)},

(5)

LatSim : RN×d+1 → R is the predictive model

r
(i)
a is the residual at iteration i for subject a
D ∈ RN×N is a centered matrix of differences between residuals
Fi = {0 . . . i} is the set of selected connections at iteration i
X ∈ RN×d is the vectorized matrix of connections for all subjects
y ∈ RN is the response variable
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LATEX

Post-Hoc Feature Importance

We also estimated feature importance from model weights using a
post-hoc algorithm.

F = argsort
j

Σabd (DabW
2
djXajXbj), (6)

Here the residual is set to the response variable,
D is calculated as before
W ∈ Rd×d ′

is the set of model weights, i.e., the kernel A
F is the resulting set of ranked features
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LATEX

Simulation Study

We performed a simulation on a synthetic dataset, with d = 10, 000
features, Ntrain = 40 training subjects, and Ntest = 120 test subjects.

The first 1, 000 features were correlated with the response variable
with ρ = 0.5.

The second 1, 000 features were correlated in only half of subjects at
a variable ρS ∈ [0.2, 1].

Xij ∼ N (0, 2)

yi ∼ N (0, 1)
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LATEX

Simulation Results
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LATEX

Simulation Conclusions

1 LatSim has a small predictive advantage over GCN, which has a small
predictive advantage over Ridge Regression.

2 LatSim can identify all three classes of features (correlated, partially
correlated, and non-correlated), while the GCN can’t.
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LATEX

Brain Development Study

We used the fMRI scans of 620 subjects from the Philadelphia
Neurodevelopmental Cohort (PNC) dataset to predict subjects’ age, sex,
and general intelligence over 10 CV splits.
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LATEX

Prediction Results
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LATEX

Prediction Accuracy as Function of Cohort Size

Age Sex Intelligence
(RMSE, years) (Accuracy) (RMSE, WRAT score)

Model N=30 N=496 N=30 N=496 N=30 N=496
Null 3.3 0.54 15.7
M-GCN 4.47 2.37 0.51 0.75 23.27 15.59
MLP 4.52 2.43 0.53 0.8 21.17 15.64
GCN 3.89 2.16 0.49 0.8 16.29 14.38
LatSim 2.86 2.05 0.55 0.82 15.59 14.26
p-value 2.2e-6 5e-3 0.32 0.11 0.02 0.30

LatSim is much better than GCN at up to 50 training subjects for age
and intelligence prediction, equal after that.

All models perform close to the same for sex prediction.
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LATEX

Computational Efficiency

Model LatSim GCN MLP M-GCN
Epochs 200 1e4 1e4 5e3
Training Time 4.3s 406s 364s 5912s

LatSim is almost as fast as linear methods, and almost 2 orders of
magnitude faster than other deep models.
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LATEX

Key Connections
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Using the greedy algorithm, we identified several connections appearing in the
majority (sometimes 100%) of CV splits for the top 10 connections.
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LATEX

Greedy Selection is Superior to Other Interpretability
Methods
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Most predictive information is found in 1-5 connections, and adding more features
only slowly improves prediction accuracy.
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LATEX

Default Mode and Uncertain Network Regions

Sex Sex

A

B

C

ROIs from the DMN and UNK functional networks are over-represented in
connections important for age, sex, and intelligence prediction.
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LATEX

Part 2: Decomposition of Brain Connectivity

Anton Orlichenko Decomposing fMRI Data with Latent SimilarityResearch MeetingSeptember 21, 2022 27 / 46



LATEX

Useful Information

It is possible to identify around 14 functional networks from functional
connectivity.

A 264-ROI template gives rise to 34,716 unique connections.

1-5 connections give most of the useful information for a predictive
task, but the actual connections vary from task to task.
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LATEX

The Autoencoder Problem

The Autoencoder Problem

Is it possible to summarize connectivity data in a small number of
variables, independent of predictive task?
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LATEX

Dictionary Learning

The idea is to create a codebook, in the spirit of dictionary learning,
and use it for subsequent tasks.

Previous works9 used a codebook of K = 8 rank-1 matrices10, tied to
a specific predictive task.

D =
∑
n

(||Γn − Xdiag(cn)X
T ||2F + γ2||cn||22) + γ1||X||1

ŷn = MLPθ(cn)

L = λ
∑
n

||yn − ŷn||2
(7)

9
D’Souza et al. 2019 https://doi.org/10.1007/978-3-030-32248-9 79

10
The authors stated this was the ”knee” of the eigenspectrum of Γ
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LATEX

Missing the Manifold

Why are these codebooks based on downstream tasks (i.e., learned in a
supervised manner rather than inferred from the data)?
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Unsupervised dictionary learning does not seem to capture the structure of
the manifold.
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LATEX

Connectivity Decomposition

We believe that not enough codes are being used (the previous graph
suggests there is an optimum number greater than 100).

Rank-1 matrices may not capture meaningful information about
functional connectivity.

Mixed-Rank Codebook

Our idea is to construct a codebook from mixed ranks.

B = {AAT | A ∈ Rd×ri , r = {r1, r2, . . . , rM}, ri < d}

X̂n =
∑
i

winBi

L =
∑
n

||Xn − X̂n||2F

(8)
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Codebook Preliminary Results
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This task-agnostic autoencoder reduces data dimensionality by 2
orders of magnitude, from d = 34, 716 to d ′ = 300, while maintaining
predictive accuracy.
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Effective Connectivity

We want to apply the codebook idea to effective connectivity.
There are several popular effective connectivity frameworks:

Granger causality11

Spectral dynamic causal modeling1213

Transfer entropy14

Problem: Granger causality may give poor results and is computationally
expensive, but there may be opportunities for optimization. Many effective
connectivity methods require small numbers of ROIs/signals15.

11
Kassani et al. 10.1109/TMI.2020.2990371

12
Park et al. 2018 https://doi.org/10.1016/j.neuroimage.2017.11.033

13
Zhargami and Friston 2020 https://doi.org/10.1016/j.neuroimage.2019.116453

14
Ursino et al 2020 https://doi.org/10.3389/fncom.2020.00045

15
Hidalgo-Lopez et al. 2021 https://doi.org/10.1038/s42003-021-02447-w
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LATEX

Dynamic Connectivity

We want to apply the codebook idea to dynamic functional and effective
connectivity.

The time-varying graphical LASSO (TVGL) method has been used to
estimate dynamic FC16, but has not been shown to be superior in
downstream tasks.

Dynamic effective connectivity has been proposed by Friston, but is
based on computationally inefficient methods, limiting its scope.

Objective

Our goal is to use a large, empirically validated codebook to track changes
in connectivity while the subject undergoes scanner tasks.

16
Cai et al. 10.1109/TBME.2018.2880428
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Part 3: Tools and Reproducibility
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LatSim Python Package

Currently available on GitHub at
https://github.com/aorliche/LatentSimilarity/
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Downloading and Using LatSim

We are working on a Pip package, but the GitHub code is very easy to
download and use.
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Hyperparameter Tuning

Example Jupyter notebooks with test datasets are included in the
GitHub repository.

We include a scikit-learn interface with a function for hyperparameter
tuning.
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Part 4: Data Visualization
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ImageNomeR

Performing data exploration may require lengthy and repetitive code
editing.

ImageNomeR (Image geNome exploreR) displays some commonly
useful graphs.

Currently available on GitHub at
https://github.com/aorliche/ImageNomeR/
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LATEX

LatSim/ImageNomeR Demo

An interactive demo is running on a Linode cloud instance.

Go to https://aorliche.github.io/LatSim/ and click on the demo link.
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Multiple Useful Graphs

ImageNomeR includes bar graphs and box plots of top features, as well as
functional network and connection summary graphs.
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Nilearn Integration

You can visualize significant connections or regions via a point and click
interface.
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Interactive Population Similarity

You can view the population-level similarity matrix. Clicking on a matrix
element gives a subject-level breakdown.
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LATEX

Thank you!
Any questions?
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